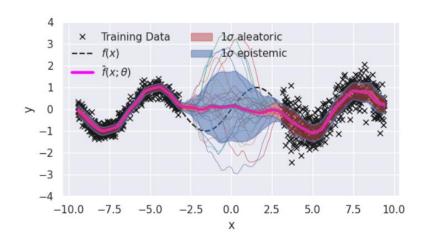


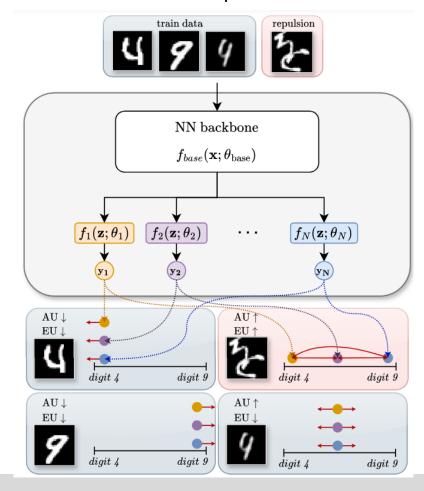
Austria

Research Group

Machine Learning for Radar Processing **Uncertainty Modelling, Graphical Models, Edge Al and Causality**

Robust Al for Industrial and Medical Applications

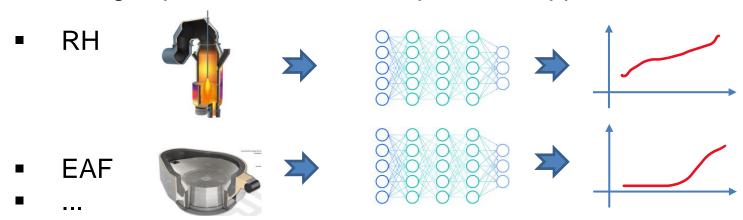



Uncertainty Modeling

- Aleatoric uncertainty: Captures noise inherent in the data (not reduceable)
- Epistemic uncertainty: Uncertainty in the model due to lack of knowledge and data

Last-Layer Ensemble:

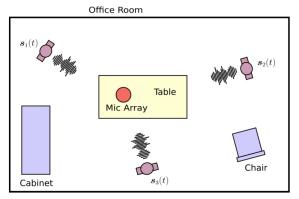
Repulsive particle-optimization variational inference in function space

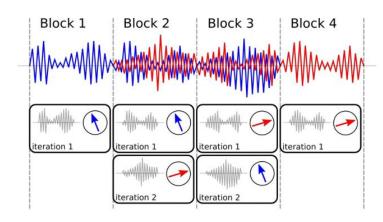

Robust AI for Industry: Refractory

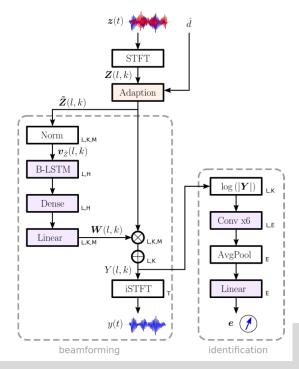
Condition Monitoring:

- Model the wear of refractory
- Optimal usage of refractory
- Safety!

- Transfer learning of many inhomogenous source tasks
- Leverage performance by transfering knowledge among tasks
- Fine-tuning of pre-trained model for particular application:






Blind Speech Separation and Dereverberation

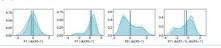
Setup

Model

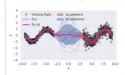
Results:

TABLE III: Speech separation and dereverberation performance for the *real* RIRs in *block-online* mode.

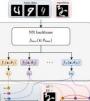
model	C	T_B	SI-SDR	WER	BER
BSSD-FD-SA	2	1.0s	3.80 dB	66.94 %	37.40 %
		2.5s	7.05 dB	44.22 %	15.88 %
		5.0s	8.64 dB	34.79 %	10.00 %
	3	1.0s	3.00 dB	75.68 %	48.90 %
		2.5s	5.19 dB	59.94 %	27.13 %
		5.0s	6.73 dB	52.98 %	14.75 %
	4	1.0s	2.49 dB	78.21 %	64.40 %
		2.5s	3.71 dB	71.96 %	43.75 %
		5.0s	4.76 dB	68.07 %	35.00 %

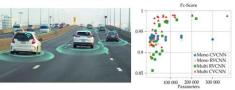


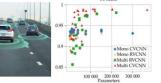
Bayesian Causal Inference


- Structural Causal Model (SCM) inference:
- 1. Infer a causal order L using a neural autoregressive distribution $p(L \mid \theta)$ 2. Marginalise over causal graphs by limiting the cardinality of
- parent sets Causal discovery: Expected Structural Hamming Distance (ESHD)

- Blue: Scale free graph; Orange: Erdös-Renyi graph; 20 nodes, 200 data samples
- Posterior interventional distribution: Consensus protein interaction graph (Sachs et al. (2005))


Uncertainty Modeling

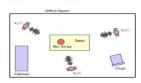

- Aleatoric uncertainty: Captures noise inherent in the data (not reduceable)
- Epistemic uncertainty: Uncertainty in the model due to lack of knowledge and data

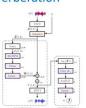

Last-Layer Ensemble:

Repulsive particle-optimization variational inference in function

Radar Interference Mitigation

Robust AI for Industry


Meta Learning:


- Transfer learning of many inhomogenous source tasks
- · Leverage performance by transfering knowledge among
- · Fine-tuning of pre-trained model for particular application

Speech Separation & Dereverberation

Computational Lung Sound Analysis

Recording of data in Vietnam

Graph pruning based on Bethe free energy
Reliability of Bethe free energy approximation

Multiple Instance Learning

Analysis of Belief Propagation and Bethe Free Energy Approximations

(infineon

· Fixed point analysis of Belief Propagation

SIEMENS

- $\theta \in [-0.5, 0.5]$ BETHE-OPT

